Routing in the frequency domain
نویسندگان
چکیده
The design of single transceiver based multichannel multi-hop wireless mesh networks focuses on the trade-off between rapid neighbor synchronization and maximizing the usage of all available channels. Existing designs are confined to the MAC layer and scale poorly as the network grows in coverage and density. We recently proposed Dominion as a cross-layer architecture that includes both medium access control and routing. Dominion eliminates the need for neighbor synchronization at the MAC layer and pushes the intelligence up the network stack. At the MAC layer, a node switches channels according to a deterministic schedule which guarantees that a node converges with each of its neighbors periodically. At the network layer, the channel-hopping aware routing substrate routes traffic along the frequency domain, i.e., packets along a multi-hop route generally traverse via multiple channels. In this paper, we present the complete design, analysis and evaluation of Dominion and make four new contributions. Firstly, we extend Dominion to support goal-oriented routing: source nodes can locally choose to maximize throughput or minimize end-to-end latency without requiring any changes in the network. Secondly, we describe a technique that eliminates intra-flow interference. In absence of extrinsic interference, Dominion now allows network flows to maintain constant throughput and deterministic end-to-end latencies irrespective of distance. Thirdly, via theoretical modeling and analysis, we provide expected throughput and end-to-end latencies for network flows. Finally, via extensive QualNet simulations we show that Dominion achieves 1064% higher throughput than IEEE 802.11 while being 299% fairer.
منابع مشابه
Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملImage encryption based on chaotic tent map in time and frequency domains
The present paper is aimed at introducing a new algorithm for image encryption using chaotic tent maps and the desired key image. This algorithm consists of two parts, the first of which works in the frequency domain and the second, in the time domain. In the frequency domain, a desired key image is used, and a random number is generated, using the chaotic tent map, in order to change the phase...
متن کاملFrequency domain analysis of transient flow in pipelines; application of the genetic programming to reduce the linearization errors
The transient flow analyzing by the frequency domain method (FDM) is computationally much faster than the method of characteristic (MOC) in the time domain. FDM needs no discretization in time and space, but requires the linearization of governing equations and boundary conditions. Hence, the FDM is only valid for small perturbations in which the system’s hydraulics is almost linear. In this st...
متن کاملLeach Routing Algorithm Optimization through Imperialist Approach
Routing is an important challenge in WSN due to the presence of hundreds or thousands of sensor nodes. Low Energy Adaptive Clustering Hierarchy (LEACH) is a hierarchical routing and data dissemination protocol. LEACH divides a network domain into several sub-domains that are called clusters. Non-uniformity of cluster distribution and CHs selection without considering the positions of other sens...
متن کاملFrequency Domain Model Simplification of Cumulative Mass Fraction in CMSMPR Crystallizer
In this contribution, linearized dynamic model of Cumulative Mass Fraction (CMF) of Potassium Nitrate-Water Seeded Continues Mixed Suspension Mixed Product Removal (CMSMPR) crystallizer is approximated by a simplified model in frequency domain. Frequency domain model simplification is performed heuristically using the frequency response of the derived linearized models data. However, the CM...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wireless Networks
دوره 16 شماره
صفحات -
تاریخ انتشار 2010